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Abstract--Tl~e problem of Non-Darcian mixed convection about a vertical cylinder embedded in a porous 
medium is analyzed. Nonsimilarity solutions are obtained for the case of variable wall temperature (VWT) 
and variable surface heat flux (VHF). 

The entire mixed convection regime is covered by two different nonsimilarity parameters : one for VWT 
and the other for VHF, including the two limits of pure forced convection and pure free convection. A 
finite-difference scheme was used to solve the system of the transformed governing equations. 

The effect of four characteristic parameters namely the heating condition at the wall, the strength of 
mixed convection, the inertia and the boundary effect (the non-Darcian effect), and the cylinder curvature 
effect, on the heat transfer is investigated numerically. The results are found to be in excellent agreement 
with those of previous work. 

1. INTRODUCTION 

Convective heat transfer and fluid flow in porous 
media has recently received considerable attention 
with geophysical and engineering applications. Such 
applications include geothermal systems, chemical 
catalytic reactor, packed sphere beds, grain storage 
and thermal insulation engineering. 

In most of the previous studies the boundary-layer 
formulation based on Darcy's law was adopted. The 
no-slip boundary c, ondition is found to modify the 
velocity profile near the wall which in turn affects the 
rate of heat transfi,~r from the wall, not considering 
such effect will result in error in heat transfer cal- 
culations. Also, when the Reynolds number is of an 
order greater than one, the inertial force is no longer 
negligible compared with the viscous force and must 
be included. These two effects are incorporated in the 
present analysis using the non-Darcy model proposed 
by Brinkma~Forchheimer [1]. 

Kumari and Nath [2] studied the mixed convection 
from a thin vertical cylinder embedded in a saturated 
porous medium. The effect of inertial force is included 
in their model. Chen et al. [3] considered other non- 
Darcian effects, the no-slip boundary condition, iner- 
tial force, variable porosity and thermal dispersion, 
on mixed convection about an isothermal vertical cyl- 
inder in a saturated porous medium. The formulation 
of Chen et al. [3] does not allow calculation of the 
entire mixed convection regime, since the pure natural 
convection requires the mixed convection parameter 
in their formulation (Gr/Re) to go to oc. 

In the present work mixed convection from a ver- 
tical cylinder embedded in saturated porous medium 

is investigated. The non-Darcy model is used to incor- 
porate the effects of the inertial force and no-slip 
boundary condition. Two wall heating conditions are 
considered, variable wall temperature (VWT) and 
variable surface heat flux (VHF). A nonsimilar solu- 
tion is sought, since in the general nonisothermal heat- 
ing boundary conditions the similarity solution is not 
possible. Following Aldoss et al. [4] a nonsimilar solu- 
tion that covers the entire regime of mixed convection 
from the pure forced convection limit to the pure 
natural convection limit, is constructed, using a mixed 
convection parameter which takes values between 1 
and 0. The model also includes the effect of the cyl- 
inder curvature. 

The resulting transformed governing equations are 
then solved by a finite difference scheme. Numerical 
results for both variable wall temperature and variable 
surface heat flux conditions, and the effect of other 
governing parameters on the Nusselt number are 
presented. 

2. FORMULATIONS 

To obtain the volume average conservation equa- 
tions the following assumptions were made : 

(1) The flow is steady, laminar, incompressible and 
two-dimensional. 

(2) The Boussinesq approximation is valid, which 
is a two-part approximation: (a) it neglects all vari- 
able property effects in the three governing equations, 
except for density in the buoyancy term of momentum 
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NOMENCLATURE 

Cr local friction factor 
Da,. local Darcy number, K/x 2 
Op pore or particle diameter [m] VHF 
f dimensionless stream function 
g acceleration of the gravity [m s -2] VWT 
h(x) local heat transfer coefficient 

[Wm 2K 1] X 
h average heat transfer coefficient, r 

~ h d x [  w m - 2 K - I ]  

k thermal conductivity [W m -1 K -1] 
K permeability coefficient of the porous 

medium [m 2] fl 
K' coefficient of Forchheimer's equation 
L length of the plate [m] 6 
Nux local Nusselt number, hx/k rl 
N~ average Nusselt number, hL/k 0 
Pex local Peclet number, U~x/~ # 
Pe* parameter of the wall effect v 
Pr Prandtl number, via ( 
qw local surface heat flux [W m -2] p 
R* inertial effect parameter = U~K'/v Zw 
Rax local Rayleigh number for (VWT) 

case, Kgfi(Tw - T~)x/vct 2 
Ra* modified local Raleigh number for e 

(VHF) case, Kgflgwx2/kvct 
Re Reynolds number, U~x/v 
T temperature [K] 
T~ free stream temperature [K] 
Tw wall temperature [K] 
U velocity component in the x-direction 

[m s-11 
V velocity component in r-direction 

[ms 1] 

two-dimensional velocity vector 
[m s -q  
variable surface heat flux boundary 
condition 
variable wall temperature boundary 
condition 
axial coordinates 
radial coordinate. 

Greek symbols 
effective thermal diffusivity of 
saturated porous medium [m 2 s i] 
volumetric coefficient of thermal 
expansion [K -1] 
boundary layer thickness 
pseudo-similarity variable 
dimensionless temperature 
dynamic viscosity [N s m -2] 
kinematic viscosity [m 2 s-i]  
nonsimilarity parameters 
density of the fluid [kg m 3] 
local wall shear stress, # (au/Sy)y_o 
[Nm 2] 

curvature parameter 
porosity 
stream function 
rate of change of ( with respect to x. 

Subscripts 
f variable surface heat flux case 
t variable wall temperature case 

free stream condition 
w wall condition. 

equations and (b) it approximates the density differ- 
ence term with a simplified equation of state, that is 

p = p~(1 - f l ( T -  T~o)) (1) 

where fl is the volumetric coefficient of thermal expan- 
sion. 

(3) The fluid and the solid matrix are everywhere 
in local thermodynamic equilibrium. 

(4) The thermophysical properties of the fluid are 
homogeneous and isotropic. 

(5) The temperature of the fluid is everywhere 
below the boiling point. 

Consider a vertical cylinder embedded in a fluid- 
saturated porous medium, subjected to a combined 
natural and forced convection heat transfer. Figure 1 
shows the physical problem. Two kinds of wall heating 
conditions are considered, variable wall temperature 
(VWT), and variable heat flux (VHF). Using the 
Brinkman-Forchheimer model and under the above 

mentioned assumptions the governing equations in 
cylindrical coordinates are : 

aU 1 a(rV) 
+ - -  = 0 (2) 

ax r 8r 
K'U2 = - K [ d p  

u +  v ~ LUx+pgx 

g '  - g  
V+ - -  V 2 = 

v # 

e a r \  arJ ax 2 j ]  

[~yy + Pg~ 

r ~  r + ax~N 

a~ va~= Fair I L(rar '~ l  
U ~ x +  at c~L~x2+rOr \ a r ) f  

(3) 

(4) 

(5) 
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Fig. 1. The physical problem. 

In writing the above equations, axisymmetrical flow 
is considered where x and r are the axial and radial 
coordinates, and U and V are the axial and radial 
volume-averaged velocities. The gravitational accel- 
eration (g) is acting downward in a direction opposite 
to the x-direction, and thus, gr = 0. The non-Darcy 
effects (inertia and boundary)  are introduced through 
the two terms 

and 

u l  O(ra~__V ) 
#'Or 

in the momentum equations, respectively. By intro- 
ducing the boundary  effect term the order of the gov- 
erning equations is raised by one, which enables apply- 
ing the no-slip boundary  condit ion at the wall. 

The stream function (0) defined as : 

r Or 
R 00 (6) 

r ax 

is introduced to satisfy the continuity equation, equa- 
tion (2), identically, where R is the cylinder radius. 

In term of stream function and after applying the 
boundary  layer approximations, equations (3)-(5) 
become : 

~rr t r  ~ - r ) +  v -  Orr dr ]  

o+ 

0O 0T 000T [1 0 (rOT]] 
Or Ox ?-Tx N - 7 N t (8) 

subjected to the following boundary  conditions 

(1) Wall thermal condit ion 
(a) Power law variation heat flux at the wall : 

r = R ~ qw -= bx ~ (9) 

(b) Power law variation temperature at the 
wall : 

r = R ~ Tw - T~ = ax ~ (10) 

(2) No-slip condit ion at the wall : 

$0 
r = R ~  ( l l )  

0 

(3) Free stream velocity outside the boundary  
layer : 

U =  U~ 

r--* oo ~ l  OU= o (12) 

{ Or 

(4) Constant  temperature outside the thermal 
boundary layer : 

r ~ ~ ~ T = T~ (13) 

3.  N O N S I M I L A R I T Y  T R A N S F O R M A T I O N  

3.1. Variable wall temperature (VWT)  : ( T w - T ~  = 
ax n) 

Modifying the similarity variables introduced by 
Chen et al. [3] the following dimensionless variables 
are introduced : 

= l_pei/2~.-lfr2 
r/ x _  x ~t \ 2 R - 2 , ]  (14) 

O(~t, 0) = ~pe~i2f(~t, }~)~t 1 (15) 

T--To  
0t(~t  , ?]) ( 1 6 )  

T w - T ~  

( t  = ( t ( X )  • ( 1 7 )  

In terms of these variables the governing equations 
and boundary  conditions equations (7)-(13) become 

(1 + 2q~t)~(- 2 pe*f  TM-~t2 R*[f'2]'-f" 

+ 22Pe*(t-if,,, = _ (~t-- 1)20~ (18) 
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(1 + ),q~t)0" + [(½-- z t ) f+  2~ t ]0 ' -  nOf' 

c ,  W 00,7 

if(O, ~,) = 0 Ot(m, ~t) = 0 ] 
! 

: o  I 
Ot(O,~t) = 1.0 f (oo,~ 0 = OJ 

where 

(19) 

(20) 

pel/2 
~, (21) 

Pe~/2 + Ra~/2 

Da~Pex 
Pe* (22) 

/3 

R *  = K ' U ~  (23) 
V 

x O~ n 
2, - = - ~ ( 1 - ~ )  (24) 

dx z; 

K 
DG x2 (25) 

gflKX(Tw - T ~ )  
RG - (26) 

U ~  x 
PG - (27) 

[the curvature parameter].  (28) 2 - 
2 x 

peJ: 2 R 

In the above system of equations the prime denotes 
part ial  differentiations with respect to r/, and (t is the 
nonsimilar mixed convection parameter  for the vari- 
able wall temperature case, where (t = 1 corresponds 
to pure forced convection, and (, = 0 corresponds to 
pure free convection. The limit of 2 = 0 corresponds 
to vertical flat plate. 

The physical quantities of interest include the vel- 
ocity components  U and V, the local wall shear stress 
%=#(OU/&),=R and the local Nusselt number 
N u x = h x / k  where h = q w / ( T w - T ~ )  and qw = - k  
(dT/Or)~= R. They are given by : 

V =  R ~ 1/2 --1 I 

(29) 

}  30) 

zw(X2ot)[Pex +Rax] _ _  1/2 1/2 - 3  = f , , ( ¢ t , 0 )  (30 

the local Nusselt number  expression, equation (32). 
The final expression is : 

(2)~PEL1/2  ~ ( ~ t L  ~l/n 
\l -;,U 

Nu~ [?e~/2 + Ra~ :21-~ = - 0't (~t, 0). (32) 

The average Nusselt number  Nu can be evaluated 
by finding the average heat transfer coefficient h from 

l--n 

k 

For  the case of  uniform wall temperature (i.e. 
n = 0) the corresponding average Nusselt  number 
expression can be written as : 

~tNu[Pe~ ~:],=0 = - 20~(~t: 0). (34) 

3.2. Variable surface heatflux (VHF) : (% = bx") 
Fo r  this case the following dimensionless variables 

are introduced 

q = l p e ~ / 2 ~ f l ( ~ - R )  (35) 

Ifl(~f, 17) = ~pel/2f(~f, t l ) ~ f  I ( 3 6 )  

T - T ~  
0f(~f ,  ?]) - -  Pe~i2~f ~ (37) 

qwx/k 

~f = ~f(X).  (38 )  

In terms of  these variables the governing equations 
and boundary  conditions equations (7)-(13) are 
transformed into 

(1 q- J.t/~f) ~f2 e e . f i v  _ ~f2 R * [f,2], _ f , ,  

+22Pe*~?-if,,, + (~f_ 1)30~ = 0 

(1 + 2q~f) 0" + [(½-- Xr)f+ 2~r]0' -- nOf' 

(39) 

1 [ , ~ f  a0f7 
(/T/ -[- ~ "]- Zf)  = - - • f C f  <~-f'~j (40) 

i f ( 0 ,  ~f) = 0 0f(o(] ,  ~f) = 0 1 
/ 

/ (30 2 f ( 0 , ~ f ) = 0  f (  , ~ r ) = ~ f l  
L 

0~(0,~f) = - 1 . 0  f " ( ~ , ~ f )  = 0J 

(41) 

where 

Pe* = 

pe~/2 

Pe~/2 + Ra* 113 

DaxPex 
/3 

(42) 

(43) 

K" U m 
R*- 

I: 
(44) 

X ~ f  2 m +  1 
Zf ~f ~3X 6 

K 
Dax = m 

X 2 

- -  (I -- ~f) (45) 

(46) 
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qwgflKx 2 
Ra* - ctv~ (47) 

Uoox 
eex = ( 4 8 )  Gt 

2 x 
2 - [the curvature parameter]. (49) 

pe~/2 R 

In the above system of equations again the prime 
denotes partial differentiations with respect to t/, and 
(f is the nonsimilar mixed convection parameter for 
the variable heat flux case, where ~f ~- 1 corresponds 
to pure forced convection, and (f = 0 corresponds to 
pure free convection. 

The corresponding physical quantities are given by : 

U := U ~ f z f ' ( ~ r ,  t/) (50) 

r f~eel /2r_~ 

, af 
[(½--zf)f--(½+Zf)r/f +Zr~f~r ]  } (51) 

zw [Pe~/2 + Ra*l/3] -3 " 0 = f  (~f,) (52) 

Nu~[ee~/Z-F-Ra*~/3] - l  = 1/0r(~f, 0). (53) 

The average Nusselt number Nu can be obtained 
from the local Nusselt number expression equation 
(53). It is : 

2m+ 1N-uuPeL ,/z 
6 

( ~fl. ~3/2m+1 ~1 1/0((f,R) 
= , ,  

2~m 

× \ ~ - r  J d~f. (54) 

For  the case of uniform wall temperature, (i.e. 
m = -0 .5) ,  equation (54) reduces to 

- -  2PeL (55) 
Nul . . . .  0.5 -- 0(~fL, 0) ~LI 

The transformed governing equations and the cor- 
responding boundary conditions, equations (18)- 
(28), for VWT case and (39)-(49) for VHF case are 
then solved using Keller-Box method [5]. 

The rate of convergence depends on the previous 
iteration (initial guess), so convergence can be easily 
obtained provided that the initial estimates to desired 
solution are close enough. In this work, the values at 
the previous station (("-~) were used as initial esti- 
mates to the present station (("). 

Different At/ spacing (0.01, 0 .05, . . . ,  0.5) and A( 
steps (0.01, 0.05 and 0.1) were tested, and the cal- 
culations showed that the rate of convergence of the 

solution was quadratic in all cases, except when 
A( = 0.1, where the convergence was linear. 

Although a uniform grid across the shear layer was 
quite satisfactory for the most cases, especially in lami- 
nar flow, the Keller-Box scheme is unique in that 
various spacing in both ( and t/direction can be used. 
In this work, reducing the values of A( and At/below 
0.05 would result in no changes in the results. 

Two types of tests were made in determining the 
value of t/~, one with the momentum boundary layer 
thickness, and the other with the thermal boundary 
layer thickness. The final value of t/~ was chosen as 
so that beyond it the convergence of the solution 
would not change significantly and the change in the 
temperature at the edge of it is not significant, i.e. 
IATI~ < e, where e was chosen to be 10 -5. 

Using the single nonsimilar parameter ((), where 
( = 0 corresponds to pure free convection and ( = 1 
corresponds to pure forced convection, one needs to 
run the solution from ( = 0 to ( = 1 to cover the whole 
regime of mixed convection, thus both the computer 
time and efforts were minimized. 

4. RESULTS AND DISCUSSIONS 

The effects of all parameters included in the final 
system on the velocity profile, temperature profile, 
rate of heat transfer and the local wall shear stress 
were computed and presented for both Darcian and 
non-Darcian models. The details are found in [6]. For  
brevity only their effects on the local Nusselt number 
are presented here. 

4.1. Effect o f  the heating condition 
Numerical results were obtained and presented for 

VWT and VHF wall heating conditions. These results 
cover the values of the exponent (n) and (m) which 
are physically realistic. The physically realistic values 
of these exponents are the ones associated with 
increased or fixed values of 6 and U, the boundary 
layer thickness and the stream wise velocity com- 
ponent with respect to x as long as the wall tem- 
perature at x > 0 is different from that of the sur- 
rounding. For the vertical cylinder (and the vertical 
plate), the range of the exponents n and m are 
0 ~ < n ~ < l a n d - 0 . 5 ~ < m ~ < l  

Figures 2 and 3 show the effect of n and m on 
the local Nusselt number for VWT and VHF cases, 
respectively. 

At higher values of n and m, the thermal boundary 
layer thickness is smaller and the temperature gradient 
at the surface is higher. This means that higher values 
of heat transfer rates (higher Nusselt numbers) are 
associated with higher values of n and m. 

4.2. Effect o f  the inertial force 
The parameter R* = UooK'/v is found to charac- 

terize the effect of the inertial force, where the inertia 
term K'  is proportional to pore diameter. Therefore, 
the inertia effects depend strongly on the pore size. 



1146 T.K. ALDOSS et al. 

2.0 
P ' e = l ,  R'= I ,  A=I  

n .° 

~" 0.5 ./" 
. . . . . . .  1.0 ,,-" 

o°" 

I °0 .. .°°°°"°° oO 
.~+ ......... Dmr~y ...--" . ...... . 
• - 4 1 4  ] . . . . . . . . . . . . . . . . . .  . . - ' °  ,-" 

K o ,  . . . . .  

°'°o.o o.z 0.4 o.~ . . . . . .  ~.'o . . . . . .  'i.o 
¢ 

Fig. 2. Local Nusselt number at selected values of n (VWT). 

2.0 

P e ' = l ,  n = l ,  h = l  

. . . .  1.0 
" ........ 10.  

~ +  1 . o  ...... D~y .--"'°" ~ ~-" 
--, 14 

,4 0.5 

• .o° 

o . o  . . . . . .  ~ . ,~  . . . . . .  ~ . i  . . . . . .  ~ . ' e  . . . . . .  ~ . ' ~  . . . . . .  l . o  

¢ 
Fig. 4. Local Nusselt number at selected values of R* (VWT). 

R=I, 7 P ~ = I ,  A=I  

/ / / o . J / "  ~ _ _ - 0 . 5  
0.0 

.... 0.5 ..-" 
-t- ........ 1.0 ..-" .--' 

1 ,0  . o ~ ' *  o ' t " ° ~ / "  
" ' - - .  . . . . .  Dar~_o.o.o °° '° .o.-~'..  s ~ ,,. • 

Z ~ ~ 0 . 5  oo.:.~... 

°'°o.6 . . . . . .  ~i.'~ . . . . . . . . . . . . . . . . . . . . . . . . . .  0 . 4  o . e  '6"e . . . . . . .  i, 
¢ 

Fig. 3. Local Nusselt number at selected values ofm (VHF). 

2.0 

P e ' = l ,  m = l ,  X=I  
7 

. . . .  t.0 

1.0 ........ 
N ooo ~s,s  

0.5 
4 f:...~'.. "~' 

0.0 o.o . . . .  ~.'~ . . . . . .  ~ .~  . . . . . .  ~ :6  . . . . . .  ~. 'e . . . . . .  "Lo 
¢ 

Fig. 5. Local Nusselt number at selected values of R* (VHF). 

For porous media with small pores and low porosities, 
the permeability is small, and thus, shows negligible 
inertial effects. On the other hand, for porous media 
with large pores and porosities, R* can be quite large, 
even for normal  temperature difference for the same 
geometry. 

Since in actual applications Uo~ can be assumed to 
be of order one O(1), v = O(10 -4) and K '  = O(10-7), 
the parameter R* becomes O(0.001), so that the value 
of R* (0, 1, 10) is enough to test the effect of inertia. 

The inertial effect on local Nusselt number  is shown 
in Figs. 4 and 5. Increasing the inertia parameter R* 
decreases the rate of heat transfer in the NCDR,  and 
increases it in the FCDR,  both in VWT and VHF 
cases. 

4.3. Effect o f  boundary 
The parameter 

1 Uo~x K 
ee* - 

E O~ X 2 

is found to characterize the boundary  effect, and its 

physical value, according to Kaviany [7], is of the 
order (10-5), based on the fact that K is of the order 
(10 -12) and e is of  the order (1). 

Pe* is inversely proport ion to x, thus the wall effect 
will be more pronounced near the leading edge, where 
the boundary layer solutions are not  valid. For  low 
porosity media, the no-slip condit ion term has strong 
effects for large temperature difference. 

The effects of Pe* are presented in Figs. 6 and 7. It 
is clear that as the wall effect parameter increases, the 
thermal boundary  layer thickness increases, resulting 
in lower heat transfer rate. This is correct for both 
cases of VWT and VHF,  and for the entire mixed 
convection regime. Moreover, increasing the bound- 
ary parameter results in a reduction in the velocity 
and the velocity gradient within the boundary  layer, 
and thus lowers the local wall shear stress. Details can 
be found in [6]. 

4.4. Effect o f  curvature 
The curvature effect in the case of a vertical cylinder 

is introduced by the parameter 
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2 x 
2 

pe~/~ R 

where R is the radius of the cylinder. 
The physical value of 2 depends on R and Pex. Since 

R must be small compared to x for the assumption 
of infinite cylinder ~:o be valid with boundary layer 
approximation (for x > 0), the parameter 2 is O(0.1). 

Figures 8 and 9 show the effect of the curvature 
parameter (2) on the local Nusselt number for VWT 
and VHF, respectiw,qy. Increasing ). has the effect of 
increasing the gradient of the thermal boundary layer 
at the wall, thus increasing the rate of heat transfer 
(local Nusselt number). This is prevailing for the 
entire mixed convection regime. Such an effect of cyl- 
inder curvature on the local Nusselt number is found 
and reported by Gil] et al. [8]. Since ~. has in its defi- 
nition Peg, it is not appropriate as a curvature par- 
ameter in the case of pure natural convection. The 
effect of cylinder curvature in case of pure natural 
convection is reported by Minkowycz and Cheng [9], 

I 
N 

3 .0  

2.0 "[ 

(~ 1 . 0  l I1. 

Z 

0.00.  , . . . . .  
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'<b' . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.0 e.o e.o 
(Ra,/Pe,) t/~ 

Fig. 9. Local Nusselt number at selected values of ). (VHF). 

increasing curvature parameter has the effect of 
increasing Nux. 

4.5. Effect of the strength of mixed convection 
The nonsimilarity parameter ~ measures the 

strength of mixed convection, where the limit ~ = 0 
corresponds to pure natural convection while the 
other limit ~ = 1 corresponds to pure forced convec- 
tion. Thus, the values of ~ from 0 to 1 cover all the 
possible strength of mixed convection including free 
and forced convections. The effect of ~ on Nux is 
demonstrated in Figs. 2-9. Increasing ~ increases the 
Nusselt number expression continuously, with the 
highest value at ~ = 1 (the pure forced convection 
limit). The behavior of Nux with ~ in non-Darcian 
model is very much different from that of Darcy 
model. The values of Nu~ are always less in non- 
Darcian model. 

4.6. Validity 
For the vertical cylinder, the Darcian mixed con- 

vection (R*, Pe*) with the limit 2 = 0 reduces to a 
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Darc ian  mixed convect ion over a vertical flat plate, a 
case which was studied by Hsieh et al. [10]. Their  
results could be ob ta ined  using the present  formu- 
lat ion within 2% accuracy. 

Also, the case of  non -Darc i an  effects on  mixed con- 
vection abou t  a vertical i sothermal  cylinder embedded  
in a sa tura ted  porous  medium was considered by Chen  
et al. [3], the results using the present  formula t ion  are 
compared  with their  results for the case of  pure  forced 
convect ion with no  dispersion nor  variable  porosi ty 
effect. The match ing  between the two sets of  results is 
found to agree within a tolerance less than  5%. 

5. CONCLUSIONS 

The mixed convect ion a long a vertical cylinder 
embedded  in a sa tura ted  porous  medium could be 
formula ted  to cover  the entire regime of  mixed con- 
vection with one nonsimi lar  variable,  wi thin the range 

= 1 for pure  forced convect ion and  ( = 0 for pure  
free convection,  considering two types of  heat ing con- 
dit ions at  the wall V W T  and VHF.  

N o n - D a r c i a n  model  results are found to be much  
different than  those ob ta ined  using Darc ian  model  
alone. A bounda ry  pa ramete r  has  the effect of  reduc- 
ing N u  in the entire mixed convect ion  regime, while 
the inert ia pa ramete r  decreases Nu in N C D R  and  
increases it in F C D R .  

Larger  values of  the curvature  pa ramete r  (lower 
cylinder radius) has  higher  values of  Nu. 

REFERENCES 

1. D. A. Nield, The limitations of the Brinkman- 
Forchheimer equation in modeling flow in a satur- 
ated porous medium at an interface, Int. J. Heat Fluid 
Flow 12, 269 272 (1991). 

2. M. Kumari and G. Nath, Non-Darcian mixed con- 
vection boundary layer flow on a vertical cylinder in a 
saturated porous medium, Int. J. Heat Mass Transfer 
32, 183-187 (1989). 

3. Cha'o-Kuang Chen, Chien-Hsin Chen, W. J. Minkowycz 
and U. S. Gill, Non-Darcian effects on mixed convection 
about a vertical cylinder embedded in a saturated porous 
medium, Int. J. Heat Mass Transfer 35, 3041-3046 
(1992). 

4. T. K. Aldoss, T. S. Chen and B. F. Armaly, Non- 
similarity solution from horizontal surfaces in a porous 
medium--Variable wall temperature, Int. J. Heat Mass 
Transfer 36, 471-477 (1993). 

5. T. Cebeci, and P. Bradshaw, Momentum Transfer in 
Boundary Layers, Chaps. 7 and 8. Hemisphere, Wash- 
ington, D.C. (1977). 

6. B.J. Alsha'er, Generalized solution for mixed convection 
from surfaces embedded in porous media; the entire 
regime, M.Sc. Thesis, Jordan University of Science and 
Technology (1994). 

7. M. Kaviany, Principles of  Heat Transfer in Porous 
Media, Chaps. 1 and 2. Springer, Berlin (1991). 

8. U. S. Gill, W. J. Minkowycz, Ch'o-Kuang Chen and 
Chien-Hsin Chen, Boundary and inertia effects on con- 
jugate mixed convection-conduction heat transfer from 
a vertical cylindrical fin embedded in a porous medium, 
Numer. Heat Transfer 21,423-441 (1992). 

9. W. J. Minkowycz and P. Cheng, Free convection about 
a vertical cylinder embedded in a porous medium, Int. 
J. Heat Mass Transfer 19, 805-813 (1976). 

10. J. C. Hsieh, T. S. Chen and B. F. Armaly, Mixed con- 
vection along vertical flat plate embedded in a porous 
medium : The entire regime, Int. J. Heat Mass Transfer 
36, 1819-1825 (1993). 


